Phase Measurement: Introduction


Most exciting phenomenons that occur in complex media arises from interference effects. Controlling the phase of an incident field with a spatial light modulator is what made the field of wavefront shaping possible. Nevertheless, the measurement of the phase is a crucial step for many applications. In particular, recording both the amplitude and the phase for a set of input wavefront is necessary to record the transmission matrix of a linear medium. The knowledge of the transmission matrix of a scattering medium allows, for example, to use it as a lens [1], a controllable phase plate [2,3] or polarizer [4,5].

In such experiments, the phase of the output optical field for different input illuminations has to be recorded with the same phase reference. For this reason, one uses interferometric methods to measure the complex field; Phase Shifting Digital Holography (tutorial to come) or Off-Axis Holography (tutorial to come). In both cases, the unknown optical field interferes with a reference wavefront. The intensity of the interference is measured using a CCD to reconstruct the phase image. Phase Shifting Digital Holography requires 4 different measurements to obtain one phase image, leading to longer acquisition times and making the method more sensitive to interferometric instabilities. Off-Axis Holography allows us to measure the complex field in one shot but at the cost of a loss of resolution.


[1] S.M. Popoff et al., Phys. Rev. Lett., 104, 100601, (2010)

[2] Y. Guan et al., Opt. Lett., 37, (2012)

[3] J.H. Park et al., Opt. Express, 20, (2012)

[4] J.H. Park et al., Opt. Lett., 37, (2012)

[5] E. Small et al., Opt. Lett., 37, (2012)

Created by sebastien.popoff on 13/06/2013