Created by sebastien.popoff on 15/11/2019

Tutorials Spatial Light Modulators

About mechanical stability using Vialux DMDs

We have been using DMDs from Vialux for a few years now, and I already published few posts about different effects that need to be taken into account when working with such devices (in particular aberrations and diffraction effects). One more trivial, but potentially troublesome, effect is due to vibrations, that come from the FPGA board and transmitted through the rigid flat cables. In this quick post, I show the damaging effect of vibrations and how to easily get rid of them, at least partially.

See full post
Created by sebastien.popoff on 21/10/2019

Tutorials Spatial Light Modulators

How to generate macropixel patterns for SLMs/DMDs with the Layout module

In many wavefront shaping experiments, such as for optimization experiments, like the seminal work by I. Vellkoop and A. Mosk, or for measuring the transmission matrix, one needs to control the amplitude and/or the phase of the field on a given number of macropixels (i.e. groups of pixels). Using DMDs, amplitude, and phase modulation can be achieved using the Lee hologram method and then sending the binary images to the device using the for ALP4lib in Python for Vialux DMDs. I released here a module written by M. W. Matthès and myself to easily and efficiently generate such patterns. The code can be found on my Github account here as well as an amplitude and phase modulation example: layout_amplitude_phase_modulation.ipynb.

See full post
Created by sebastien.popoff on 21/09/2018

Tutorials Spatial Light Modulators

How to calibrate linearly aligned nematic liquid crystal based SLMs


I previously posted a tutorial presenting a technique to calibrate spatial light modulators (SLMs). The approach was based on measuring the interference between two paths that have been reflected off two different regions of the SLM. This technique is always valid but requires aligning a mask, using a lens, and capturing and processing images of interference patterns. Nowadays, most phase-only SLMs based on liquid crystals use linearly aligned nematic crystals. Unlike twisted nematic liquid crystals, they allow phase-only modulation on one polarization while not affecting the orthogonal polarization. This feature can be used to simplify the calibration setup to characterize the SLM with a common path interferometer, not requiring a precise alignment [1]. Furthermore, it only needs a photo-detector, compared to a digital camera in the previously presented approach. This is convenient to measure the inevitable phase fluctuations of an SLM, usually around a 100 to 400 Hz frequency. In this document, we briefly describe the principle of the characterization scheme as presented in [2] and show typical results of the calibration and phase fluctuations.

Written by Paul Balondrade and Sébastien M. Popoff

See full post
Created by sebastien.popoff on 26/12/2016

Talks Wavefront shaping

Controlling Light in Complex Media

Sebastien M. Popoff

LOM Master Seminar

Friday, November 26 2016

Abstract: Seminar talk about the control of light in scattering media for focusing and imaging applications.

See full post