Created by sebastien.popoff on 09/09/2013

Highlights

Imaging with nature: Using a scattering medium as a universal scrambler for imaging by compressed sensing

[A. Liutkus et al., Sci. Rep. 5, (2014)]

The idea of compressive sensing is to acquire an image with fewer measurements than dictated by the Shannon-Nyquist theorem. In other words, an image divided into "pixels" can usually be reconstructed using fewer measurements than the total number of pixels. To do so, one needs a way to mix the information, so that any measurement contains at least a bit of information on any input element. Previous implementations of compressive sensing consisted of artificially designing hardware and a sampling procedure to generate randomness. In the present paper, the authors show that one can use a random scattering medium as a universal image scrambler. The light reflected from an image propagates through a layer of white paint and the field is measured on different receptors on the other side of the sample. By previously measuring the transmission matrix, the authors show that sparse images can be successfully reconstructed using compressed sensing techniques taking advantage of the randomness generated by multiple scattering.

See full post