Created by sebastien.popoff on 26/01/2021

Highlights

Maximum information states for coherent scattering measurements

[D. Bouchet et al., Nat. Phys., 71 (2021)]

Coherent light is a popular tool for sensing and imaging. In simple cases, one can guess or compute a spatial and/or temporal excitation beam profile that ensures that the information about a specific target can be retrieved. However, there was no general rule to find the optimal states of light that maximize the precision of a given parameter estimation. Moreover, such states are expected to depend heavily on the parameter one tries to measure. In the present paper, the authors define a general framework to identify such optimal spatial channels, regardless of the complexity of the propagating medium, using the measurement of the transmission matrix. They demonstrate this concept using wavefront shaping to probe the phase and the position of a target hidden behind a static scattering medium.

See full post
Created by sebastien.popoff on 05/11/2020

Tutorials Multimode fibers

Fast numerical estimations of axisymmetric multimode fibers modes

Estimating the propagation constants and the transverse mode profiles of multimode fibers is not as easy as it sounds. In our recent work we highlighted here, we needed to estimate the mode profiles for a standard graded-index fiber. It turned out that many standard approximations done in the literature to estimate the propagation constants do not give results accurate enough for the mode profile. The general approach we introduced in a previous tutorial to numerically find the fiber modes for any index profile using a 2D scalar finite differences approach is still valid. However, to provide accurate results, it needs a fine discretization of the space that leads to important memory and computational time requirements when the fiber core increases. If we consider an axisymmetric fiber, we can obtain a 1D formulation of the problem, that is unfortunately unstable under naive finite differences approaches. We detail here a stable formulation that leads to accurate and fast estimations of the mode profiles.

See full post
Created by sebastien.popoff on 16/09/2020

Job offers

Postdoctoral position: Matrix approach for resonant multiple scattering of light (theory)

Langevin Institute, Paris

We propose a 2 years postdoctoral position in the Waves Theory and Mesoscopic Physics group of the Langevin Institute under the supervision of Arthur Goetschy. The goal of the project is to provide a theory for the scattering matrix of strongly scattering media made of resonant units for wavefront shaping applications. Applicants should have a Ph.D. in wave physics with a solid background on wave propagation in complex systems.
Contact: arthur.goetschy@espci.psl.eu

More information here:
 

See full post
Created by sebastien.popoff on 23/06/2020

Tools

DMD diffraction tool

I presented in this tutorial the diffraction effects occurring in a DMD setup. It corresponds to a blazed grating effect and depends on the wavelength \(\lambda\), the pixel pitch \(d\), the incident angle \(\alpha\), and the angle of the micro-mirrors \(\theta\). Here is a simple app (see source code on Github) to calculate the criterion for optimal diffraction efficiency and the aspect of the diffraction pattern in the far-field when illuminating the DMD with a plane wave of incident angle \(\alpha\) with respect to the normal of the surface.

See full post