Created by sebastien.popoff on 20/11/2023

Job offers

Master intership + PhD at the Langevin Institute

Invariant Properties in Multimode Fibers for Imaging Applications

We are recruiting a master student with the possibility to continue during a Ph.D (funded) to work on the study of light propagation in multimode fibers using wavefront shaping and numerical reconstruction algorithms (phase retrieval, deep learning). Join un in Paris!

Keywords: waveftont shaping, mutlimode fibers, mesoscopic physics, phase retrieval, deep learning

See our recent publication: 

TL;DR:
We will play with deep learning frameworks to develop new approaches for calibration-less imaging through multimode fibers based on the study of invariant properties in multimode fibers.

Contact: Sébastien Popoff - sebastien.popoff(at)espci.fr

More information here.

See full post
Created by sebastien.popoff on 22/06/2023

News

Call for papers on Wavefront Shaping Tutorials:
JPhys Photonics Special Issue

Guest Editors

  • Ivo Vellekoop - University of Twente, Netherlands
  • Joshua Brake - Harvey Mudd College, United States
  • Sébastien Popoff - CNRS - Institut Langevin - ESPCI, France

In the past 15 years, wavefront shaping has emerged as a preferred tool for controlling and studying light propagation in complex media. Thousands of papers have been published, many of which present new and potentially exciting applications. However, wavefront shaping is a tool that requires experience, custom codes, and most importantly, specific tricks, which are often not published or shared. This special issue provides an opportunity to disseminate this information, thereby ensuring the reproducibility of the results and promoting the spread of techniques in this field.

More information here

See full post
Created by sebastien.popoff on 14/07/2021

Talks Wavefront shaping

Learning and Avoiding Disorder in Multimode Fibers

Sébastien M. Popoff
July 2021

In this work, we demonstrate the existence of a set of spatial channels in multimode fibers that are robust to strong local perturbations. We show that, even for a high level of disorder, light propagation can be characterized by just a few key properties.

Related article: doi.org/10.1103/PhysRevX.11.021060

See full post
Created by sebastien.popoff on 18/02/2021

Talks

Controlling the propagation of light in Multimode Fibers

Maxime Matthès, Ph.D. defense
February 12th 2021


See full post