Created by sebastien.popoff on 15/06/2023

Highlights

All-fiber Control of Entanglement:
Recovering Correlations via Mechanical Perturbations in a Multimode Fiber

In quantum optical communications, single photons can be used as a unit of quantum information. However, one can supercharge their capacity to carry information by encoding high-dimensional quantum dits, or qdits, into their transverse shape. They allow having more than two levels per unit of information as it is the case for bits. In fiber optical communications, it requires using multimode fibers to harness the spatial degrees of freedom to encode the qduts. However, when propagating through a real-life multimode fiber, the transverse shape of the photons gets scrambled because of mode mixing and modal interference. This scrambling of transverse shape is typically rectified using free-space spatial light modulators. But, this remedy prevents us from achieving a truly resilient all-fiber operation and requires a careful alignment and lab-graded stability hindering real-life implementation. In [R. Shekel et al., Arxiv 2306.02288 (2023)], the authors introduce an all-fiber method for controlling the shape of single photons and spatial correlations between entangled photon pairs. They do so by implementing carefully controlled mechanical perturbations to the fiber.

See full post
Created by sebastien.popoff on 23/09/2021

Talks Wavefront shaping

Spatiotemporal control of light

Joel A. Carpenter
May 2021

This tutorial investigates various techniques for spatial and/or temporal optical beam manipulation.

See full post
Created by sebastien.popoff on 14/07/2021

Talks Wavefront shaping

Learning and Avoiding Disorder in Multimode Fibers

Sébastien M. Popoff
July 2021

In this work, we demonstrate the existence of a set of spatial channels in multimode fibers that are robust to strong local perturbations. We show that, even for a high level of disorder, light propagation can be characterized by just a few key properties.

Related article: doi.org/10.1103/PhysRevX.11.021060

See full post
Created by sebastien.popoff on 02/11/2020

Highlights

Learning and avoiding disorder in multimode fibers

 

[M.W. Matthès, arxiv, 2010.14813 (2020)]

In the past 10+ years, numerous advances were made for endoscopic imaging, micromanipulation, or telecommunication applications with multimode fiber. The main limitation to real-life applications is the sensitivity to perturbations that sometimes causes the transmission property of the fiber to change in real-time. To address this issue, the authors (we) show that, even in the presence of strong perturbations, there exists a set of channels that are almost insensitive to perturbations. Interestingly, these channels can be found using only measurements from small perturbation leveraging the so-called generalized Wigner-Smith operator. This requires the measurement of the transmission matrix, which is done thanks to a new technique based on deep learning frameworks that compensate automatically for misalignments and aberrations, allowing fast and easy acquisitions.

See full post