Created by sebastien.popoff on 18/11/2013

Talks Wavefront shaping

Coherent control of the total transmission of light through disordered media

Sébastien Popoff

FiO, Orlando, FL, USA,
October 2013

We demonstrate order of magnitude coherent control of total transmission of light through random media by shaping the wave front of the input light. To understand how the finite illumination area on a wide slab affects the maximum values of total transmission, we develop a model based on random matrix theory that reveals the role of long-range correlations. Its predictions are confirmed by numerical simulations and provide physical insight into the experimental results.
Presentation of the article [S.M. Popoff et al., Phys. Rev. Lett. 104, (2014)]

See full post
Created by sebastien.popoff on 28/04/2013

Highlights

From the bimodal distribution to the quarter circle law

[A. Goetschy and A. D. Stone, Phys. Rev. Lett., 1304.5562, (2013)]

Almost thirty years ago, theoreticians predicted that the distribution of the transmission values of a multiple scattering sample should follow a 'bimodal distribution'.  Physically, that means that, in the diffusive regime, there is a large number of strongly reflected channels - the closed channels - and a small number of channels of transmission close to one - the open channels. The existence of these open channels regardless of the thickness of the medium is of big interest for researchers, especially for imaging or communication applications. Nevertheless, such channels have not yet been directly observed. A investigation on those channels requires a measurement of the entire transmission matrix of a lossless scattering medium. For practical reasons (open geometry, limited numerical aperture, noise...) one usually has access to a subpart of the total transmission matrix. In recent experimental measures of the transmission matrix in optics [S.M. Popoff et al., Phys. Rev. Lett., 104, 100601, (2010)] the distribution of the transmission values follows a 'quarter circle law', characteristic of totally uncorrelated systems. This means that the fraction of the transmission matrix measured shows no effect of the correlations at the origin of the bimodal distribution due to the loss of information. In this paper, A. Goetschy and D. Stone theoretically study the effect of the loss of information or the imperfect control on the statistics of the transmission matrix of a scattering system.

See full post