Created by sebastien.popoff on 15/04/2019

Highlights

Wavefront shaping in complex media for analog computation

[M. W. Matthès et al., Optica, 6 (2019)]

Performing linear operations using optical devices is a crucial building block in many fields ranging from telecommunications to optical analog computation and machine learning. For many of these applications, key requirements are robustness to fabrication inaccuracies, reconfigurability, and scalability. Traditionally, the conformation or the structure of the medium is optimized in order to perform a given desired operation. Since the advent of wavefront shaping, we know that the complexity of a given operation can be shifted toward the engineering of the wavefront, allowing, for example, to use any random medium as a lens.

See full post
Created by sebastien.popoff on 21/05/2017

Talks Wavefront shaping

Wavefront Shaping in Complex Media:
From the Compensation to the Exploitation of Randomness

Sebastien M. Popoff

CLEO 2017 - San Jose, CA (USA), May 16 2017

Abstract: In the past ten years, many techniques were developed to control light propagation in complex transmission media using spatial light modulators. It involved applications in numerous fields including biomedical imaging and therapy, fiber endoscopy, cryptography, optical micromanipulation, optical spectroscopy, telecommunications and random lasers and also served as a tool for fundamental studies of light propagation in complex environments.

See full post
Created by sebastien.popoff on 26/12/2016

Talks Wavefront shaping

Controlling Light in Complex Media

Sebastien M. Popoff

LOM Master Seminar

Friday, November 26 2016

Abstract: Seminar talk about the control of light in scattering media for focusing and imaging applications.

See full post
Created by sebastien.popoff on 01/07/2014

Highlights

From diffusive to ballistic-like transport in absorbing media

[S.F. Liew et al., Phys. Rev. B, 89, (2013)]

Intuitively, absorption of light is detrimental for imaging as it reduces the intensity of the image we see. On the other hand, scattering is also a known obstacle for imaging as it mixes light sending it in all the directions. In the present paper, S.F. Liew and his collaborators from Yale University (CT, USA) and the University of Twente (The Netherlands) show that, contrary to appearances, absorption can in fact help light to follow a direct path through disordered media.

See full post