Created by sebastien.popoff on 17/10/2016

Tutorials Spatial Light Modulators

Control a Vialux DMD with Python

Vialux provides Texas Instrument DMD (Digital MicroMirror Devices) chips with an electronic board to send and display image sequences at high speed (up to 30kHz). While they provide a C++ dll, Labview, and Matlab codes, I did not find any tool for Python. I share here a simple module that wraps the C++ functions for Python. It allows using in a simple manner the basic functions while providing the advanced features of the ALP API.

DOI

See full post
Created by sebastien.popoff on 09/10/2016

Tutorials Spatial Light Modulators

Easy generation of Laguerre Gauss beam with Python and an SLM

I want to share a simple Python written by José Salazar-Serrano. This program aims to generate a Laguerre Gauss beam with a phase-only spatial light modulator (SLM). It uses the slmPy and requires the wxPython and opencv modules to run. The full description of the package and the files are available on the Github repository.

See full post
Created by sebastien.popoff on 09/12/2015

Tutorials Spatial Light Modulators

How to control a liquid crystal SLM with Python

Most liquid crystal Spatial Light Modulators (SLMs) and some digital micromirror devices (DMDs) are controlled via an analog (VGA) or digital (HDMI/DVI) monitor standard communication protocol. In other words, you plug it to your computer and it is recognized as a monitor display. There is usually no useful tool or API provided with the device to dynamically control the SLM. I previously introduced a way to control an SLM using Matlab/Octave, now that I switched to Python, I present here a way to do this using Python.

DOI

See full post
Created by sebastien.popoff on 24/10/2014

Tutorials Spatial Light Modulators

How to use a binary amplitude Deformable Miror Device (DMD) as a phase modulator: The "superpixel" method

 

I previously presented a technique based on the Lee hologram that allows to use a binary amplitude modulator (like a DLP chip you find in standard projectors) to perform a phase modulation (or amplitude and phase modulation). Recently, a new technique was introduced in [S.A. Goorden et al., Opt. Express (2014)] that allows an accurate complex modulation with less loss in term of spatial resolution. This post is more a highlight on this paper than a proper tutorial. In a nutshell, while the Lee hologram only takes advantage of one dimension to encode the amplitude and phase in fringes, this technique exploits both dimensions of the pixel array using superpixels.

See full post