Created by sebastien.popoff on 01/10/2021

Talks Tutorials Others

Spatiotemporal control of light

Joel A. Carpenter
October 2021

Gerchberg-Saxton is a phase retrieval algorithm, which attempts to retrieve the phase corresponding to two intensity images taken in the near and far-field respectively. It can also be used for calculating computer-generated holograms (phase masks) that generate a desired.

See full post
Created by sebastien.popoff on 14/07/2020

Tutorials Others

Making useless (but beautiful) gifs with fiber modes

Social media like (too) short content like pictures or quotes, but above all, people love gifs (probably way too much). Publish a link to a few pages long post you wrote about a paper, a physical concept, or a piece of code, and a few people will like your tweet/post. Publish a gif, and the number of people you will reach will increase dramatically. Is it a good thing? Well, that depends on what you do with it. I try to use gifs to draw attention to more in-depth content that I hope some people will read. Let's make one together.

See full post
Created by sebastien.popoff on 19/05/2019

Tutorials Others

Complex-Valued Neural Networks for Physics Applications

An implementation in PyTorch

 

Artificial neural networks are mainly used for treating data encoded in real values, such as digitized images or sounds. In such systems, using complex-valued tensors would be quite useless. This is however different for physic related topics. When dealing with wave propagation in particular, using complex values is interesting since the physics typically has linear, hence more simple, behavior when considering complex fields. This is sometimes true even when the inputs and the outputs of the system are real values. For instance, consider a complex media that you excite using an amplitude modulator, such as a DMD (Digital Micromirror Device) and you measure the output intensity. You manipulate only real values, but if you want to characterize the system, you have to keep in mind that the phase is a hidden variable as the effect of propagation is represented by the multiplication by a complex matrix on the optical field.

See full post