Created by sebastien.popoff on 27/10/2020

Highlights

Inverse design of planar optical components using deep learning

[N.J. Dinsdale et al., arxiv, 2009.11810, (2020)]

Photonic integrable circuits are basically waveguide structures that allow performing useful operations, such as mode or wavelength multiplexing/demultiplexing in the case of telecommunication applications. For many operations, we can find quite easy solutions, where the shape of the structure imposes certain boundary conditions that force light to behave the way we want. However, for an arbitrary operation, it is not always possible to find a trivial solution. Non-trivial solutions, where the link between the geometry of the structure and its function is not direct, should then be considered. In the present paper, the authors use deep learning to find geometrical configurations for planar photonic circuits that look like disordered waveguides but actually perform a previously chosen linear operation. These configurations lead experimentally to robust, high throughput, and accurate behaviors.

See full post
Created by sebastien.popoff on 06/10/2020

Highlights

Model-based wavefront shaping microscopy

[A. Thendiyammal et al.,  Opt. Lett., 45 (2020)]

Wavefront shaping offers the possibility to increasing microscopic imaging depth. By learning how to focus deep inside a (not too) scattering medium, we also learn how to compensate for scattering effects around this area, allowing us to retrieve an image of this area. Typically, finding the wavefront that focuses light at a given target is done using a feedback optimization procedure, or by measuring the response of the system. In this paper, the authors propose another approach. They first create a model of the system thanks to some calibration measurements. The model is then used for finding the optical input wavefront that would be utilized for imaging at different depths. They experimentally demonstrate the advantage of this technique for two-photon fluorescent imaging through a low scattering medium.

See full post
Created by sebastien.popoff on 29/09/2020

Highlights Tutorials Spatial Light Modulators

Easy characterization of SLMs' phase deformation

[D. Marco et al., Opt. Lett., 45 (2020)]

Technical papers are important for the scientific community, it helps in particular to reproduce experimental setups. They are unfortunately not valued enough by scientific journals. I want today to highlight such a paper. Liquid crystals phase modulators - and indeed any kind of spatial light modulator (SLM) - are not free of imperfections. One effect that appears is a phase distortion of the reflected field due to spatial non-uniformities that occur during the fabrications. In practice, if you illuminate an SLM with a plane wave and you display a uniform mask, one does not end up with a plane wave, but an aberrated wavefront. In the present paper, the authors use a quite easy to implement technique to retrieve the phase distortion introduced by the SLM.

See full post
Created by sebastien.popoff on 16/09/2020

Job offers

Postdoctoral position: Matrix approach for resonant multiple scattering of light (theory)

Langevin Institute, Paris

We propose a 2 years postdoctoral position in the Waves Theory and Mesoscopic Physics group of the Langevin Institute under the supervision of Arthur Goetschy. The goal of the project is to provide a theory for the scattering matrix of strongly scattering media made of resonant units for wavefront shaping applications. Applicants should have a Ph.D. in wave physics with a solid background on wave propagation in complex systems.
Contact: arthur.goetschy@espci.psl.eu

More information here:
 

See full post