Created by sebastien.popoff on 07/08/2019

Tutorials Spatial Light Modulators

Setting up a DMD/SLM: Aberration effects

Digital Micromirror Devices (DMDs) are amplitude only (binary) modulators, however, pretty much like liquid crystal modulators, they introduce some phase distortion. Practically, it means that if one illuminates the modulator with a plane wave, even when all the pixels are set to the same value, the wavefront shows phase distortions after reflection. That can be detrimental, especially when working in a plane conjugated with the Fourier plane of the DMD surface. Fortunately, using the Lee hologram method or the superpixel method, one can achieve phase modulation. I present here how to use Lee holograms to characterize and compensate for aberrations when using a DMD. This approach can also be applied for compensating for aberration effects in other types of Spatial Light Modulators, such as liquid crystal ones.

See full post
Created by sebastien.popoff on 22/06/2019

Talks Wavefront shaping

Wavefront Shaping in Complex Media for Linear Analog Computation

Sebastien M. Popoff

PR'19: Photorefractive Photonics and beyond (Gerardmer, France), June 21 2019

Abstract: Performing linear operations using optical devices is a crucial building block in many fields ranging from telecommunications to optical analog computation and machine learning. For many of these applications, key requirements are robustness to fabrication inaccuracies, reconfigurability, and scalability. Traditionally, the conformation or the structure of the medium is optimized in order to perform a given desired operation. Since the advent of wavefront shaping, we know that the complexity of a given operation can be shifted toward the engineering of the wavefront, allowing, for example, to use any random medium as a lens. We propose to use this approach to use complex optical media such as multimode fibers or scattering media as a computational platform driven by wavefront shaping to perform analog linear operations. Given a large random transmission matrix representing the light propagation in such a medium, we can extract any desired smaller linear operator by finding suitable input and output projectors. We demonstrate this concept by finding input wavefronts using a Spatial Light Modulator that causes the complex medium to act as a desired complex-valued linear operator on the optical field.

See full post
Created by sebastien.popoff on 26/05/2019

Tutorials Multimode fibers

Compare Different Methods of Modes Estimation of Bent Multimode Fibers with pyMMF

In a previous tutorial, I explained how to calculate the modes of a bent multimode fibers. I introduced two methods, following the approach published in [M. Plöschner, T. Tyc, and T. Čižmár, Nat. Photon. (2015)]. In this short tutorial, I show how to use pyMMF to simulate bent fibers and compare the two different methods. A Jupyter notebook can be found on my Github account: compare_bending_methods.ipynb.

See full post
Created by sebastien.popoff on 22/05/2019

Tutorials Digital holography

Semidefinite Programming for Intensity Only Estimation of the Transmission Matrix


The possibility of measuring the transmission matrix using intensity only measurements is a much sought-after feature as it allows us not to rely on interferometry. Interferometry usually requires laboratory-grade stability difficult to obtain for real-world applications. Typically, we want to be able to retrieve the transmission matrix from a set of pairs composed of input masks and output intensity patterns. However, this problem, which corresponds to a phase-retrieval problem, is not convex, hence difficult to solve using standard techniques. The idea proposed in [I. Waldspurger et al., Math. Program (2015)] is to relax some constraints to approximate the problem to a convex one that can be solved using the semidefinite programming approach. I briefly detail the approach and provide an example of the procedure to reconstruct the transmission matrix using Python. A Jupyter notebook can be found on my Github account: semidefiniteTM_example.ipynb.

See full post